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Abstract It is well known that the bond dissociation en-
thalpy (BDE) of the O—H group is related to the hydrogen
atom transfer (HAT) mechanism of free radical scavenging
that is preferred in gas-phase and non-polar solvents. The
present work shows that the BDE may also be related to
radical scavenging processes taking place in polar solvents,
i.e., single electron transfer followed by proton transfer
(SET-PT) and sequential proton loss electron transfer
(SPLET). This is so because the total energy requirements
related to the SET-PT [sum of the ionization potential (IP)
and proton dissociation enthalpy (PDE)] and the SPLET
[sum of the proton affinity (PA) and electron transfer en-
thalpy (ETE)] are perfectly correlated with the BDE. This
could explain why the published data for polyphenolic
antioxidant activity measured by various assays are better
correlated with the BDE than with other reaction enthalpies
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involved in radical scavenging mechanisms, i.e., the IP,
PDE, PA and ETE. The BDE is fairly well able to rank
flavonoids as antioxidants in any medium, but to conclude
which radical scavenging mechanism represents the most
probable reaction pathway from the thermodynamic point of
view, the IP and PA (ETE) should also be considered. This is
exemplified in the case of the radical scavenging activity of
25 flavonoids.
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Abbreviations

HAT Hydrogen atom transfer

BDE Bond dissociation enthalpy
SET-PT Single electron transfer followed

by proton transfer
1P Ionization potential
PDE Proton dissociation enthalpy
SPLET  Sequential proton loss electron transfer
PA Proton affinity
ETE Electron transfer enthalpy

Introduction

Oxidative stress induced by free radicals, such as the lipid
peroxyl radical LOOe and the hydroxyl radical *OH, can
cause damage to cellular proteins, membrane lipids and
nucleic acids. This process has been implicated in the path-
ogenesis of various diseases, including coronary heart dis-
ease and some forms of cancer [1]. Flavonoids are natural
polyphenolic multifunctional antioxidants capable of

@ Springer



2594

J Mol Model (2013) 19:2593-2603

combating free radicals by direct scavenging, chelating
metal ions, inhibiting prooxidant enzymes and activating
antioxidant and detoxifying enzymes [2, 3]. Due to their
protective effects, flavonoids are recognized as potential
drug candidates to be used in the treatment of diseases
such as atherosclerosis, cardiovascular and coronary heart
diseases, cancer, neurodegenerative diseases such as
Parkinson’s and Alzheimer’s diseases, and other age-
related diseases [4, 5].

The scavenging of free radicals seems to play a notable
role in the antioxidant activity of flavonoid compounds. The
antiradical properties of flavonoids (FIO-H) are related to
their ability to transfer their phenolic H-atom to a free
radical (e.g., alkoxyl radical, RO¢). The formal H-atom
abstraction from flavonoids described by:

Fl — OH + RO® — Fl — O° + ROH (1)

is known to involve complex processes. It has been recog-
nized that this reaction proceeds via at least three different
mechanisms [6-9]: single-step hydrogen atom transfer
(HAT), single electron transfer followed by proton transfer
(SET-PT) and sequential proton loss electron transfer
(SPLET). These mechanisms may co-exist, and they de-
pend on solvent properties and radical characteristics. The
net result from all mechanisms is the same, i.e., as given in
reaction (1).

In the HAT mechanism, the phenolic hydrogen atom is
transferred to the free radical. The product of this reaction is
a flavonoid phenoxyl radical (FI-O¢). To be effective, the
F1-O-° must be a relatively stable free radical so that it reacts
slowly with a substrate but rapidly with ROs. The HAT
mechanism can be characterized by the homolytic bond
dissociation enthalpy (BDE) of the OH group. The O-H
BDE can be calculated by the following equation:

BDE = H(FI — O°) 4 H(H) — H(FI — OH) (2)

H(F1-0O¢) is the enthalpy of the flavonoid phenoxyl rad-
ical generated after He abstraction, H(H) is the enthalpy of
the hydrogen atom, and H(FI-OH) is the enthalpy of the
parent flavonoid molecule. A lower BDE value, usually
attributed to a greater ability to donate a hydrogen atom
from the hydroxyl group, results in an easier free radical
scavenging reaction. HAT is favored for radicals with a high
H-atom affinity and is preferred in non-polar solvents be-
cause it does not involve charge separation [10]. Wright et
al. [6] have suggested that BDE is an excellent primary
descriptor of the antioxidant activity.

In the SET-PT mechanism, the first step is the transfer of
an electron by which the flavonoid radical cation FI-OH"" is
formed.

Fl— OH — Fl— OH"" + ¢~ (3)

@ Springer

This step can be characterized by the ionization potential
(IP). IP is a global property of the molecule. It can be
calculated as follows:

IP = H(FI — OH*") + H(e") — H(FI — OH) (4)

H(F1I-OH"") is the enthalpy of the flavonoid radical cat-
ion generated after electron abstraction, and H(e ) is the
enthalpy of the electron.

The second step is the deprotonation of FI-OH"":

FI — OH** — Fl— O® + H* (5)

It can be described by the O—H proton dissociation en-
thalpy (PDE) which can be calculated by the following
equation:

PDE = H(Fl — O°) + H(H") — H(FI — OH*") (6)

H(H") is the enthalpy of the proton. The net result of the
SET-PT mechanism is the same as in the HAT mechanism—
the formation of a corresponding flavonoid radical.

Deprotonation of the flavonoid molecule, which results
in the formation of a phenoxide anion FI-O, is the first step
in the SPLET mechanism [8, 11]:

FI-OH —FI-0 +H" (7)

This step corresponds to the proton affinity (PA) of the
phenoxide anion FI-O . PA can be calculated by the fol-
lowing equation:

PA = H(FI— O~) + H(H*) — H(Fl — OH) (8)

H(F1-O") is the enthalpy of the flavonoid anion generat-
ed after proton abstraction. In the second step, electron
transfer from FI-O™ takes place:

FIl—-O0" —Fl—0"+e (9)

This step is related to the electron transfer enthalpy (ETE).
The ETE can be determined by the following equation:

ETE = H(FI — O%) + H(e™) — H(F1— O") (10)

The net result of SPLET is again the same as in HAT and
SET-PT—the formation of the corresponding radical. The
SET-PT and SPLET mechanisms are favored in polar media
because of the charge separation. They are preferred for
radicals with a high electron affinity [10].

In our previous reports we demonstrated that the fast
semiempirical PM6 method is fairly well able to reproduce
DEFT results regarding reaction enthalpies involved in free
radical scavenging mechanisms [12—14]. The aim of the
present work was to ascertain correlations between the ex-
perimental radical scavenging activity (RSA) of 25 flavo-
noids [15] and the calculated reaction enthalpies (BDE, IP,
PDE, PA and ETE) related to three free radical scavenging
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mechanisms (HAT, SET-PT and SPLET). On the basis of the
results obtained, conclusions can be drawn regarding the
potency of the BDE as a major physico-chemical parameter
that correlates with the free radical scavenging activity of
flavonoids [16, 17]. It should be noted that thermodynamic
parameters may be important factors governing the radical
scavenging reactions of flavonoids, while the more com-
plete insight would certainly require kinetic analysis.

Computational details

All calculations were performed using the MOPAC2009™
program package [18]. The geometries of 25 flavonoids and
the corresponding radicals, anions and radical cations were
optimized using the PM6 method. The eigenvector follow-
ing (EF) optimization procedure was carried out with a final
gradient norm under 0.01 kcalmol 'A™". The solvent con-
tribution to the enthalpies of formation was computed by
employing the COSMO (conductor-like screening model)
calculations implemented in MOPAC2009™, This approach
was used for all structures. The hydration enthalpies of the
hydrogen atom (He), proton (H") and electron (¢”) were
taken from the literature [9, 19].

Results and discussion

The results of calculations (in water) of reaction enthalpies
for 25 flavonoids, related to the individual steps of three free
radical scavenging mechanisms are presented in Table 1.
The corresponding results in the gas-phase are presented in
Table 2. The radical scavenging potency of flavonoids is
related primarily to the presence of OH groups at specific
positions on the flavonoid core. Depending on the reaction
medium, homolytic or heterolytic O—H bond cleavage
could take place at active site on the flavonoid core.
Comparisons of the calculated reaction enthalpies, i.e.,
BDE, IP, PDE, PA and ETE, enable prediction of the
thermodynamically preferred reaction pathway and the
active site for free radical inactivation. Among the de-
scriptors related to the antiradical activity, the BDE of the
O-H group is a theoretical parameter that can be used
successfully to measure the H-atom donating ability of
various antioxidants [20-23]. The minimal value of the
BDE of O-H bonds (BDEmin) indicates which O-H
group on the flavonoid core possesses the most abstract-
able hydrogen, that is, which O-H group is targeted for
radical attack. Such a feature is related primarily to the
catechol moiety in the B ring and the 3-OH group of the
C ring [24]. The BDEmin could serve as a theoretical
measure for ranking flavonoids as antioxidants because
most active flavonoids possess lower values of the BDE.

Free radical scavenging activity of quercetin

In this section, we present and discuss results obtained for
quercetin (Fig. 1) as an illustrative example of the 25 studied
flavonoids. As a potent antioxidant, quercetin is studied
widely using both experimental and theoretical approaches
[25-29].

The preferred mechanism of the antiradical activity of
flavonoids can be estimated from values of the BDE (HAT
mechanism), IP (first step of the SET-PT mechanism) and
PA (first step of the SPLET mechanism) [9, 19]. The lowest
value indicates which mechanism is thermodynamically the
most probable process. For quercetin in water, the reaction
enthalpies (in kJmol ') are shown in Fig. 1. The PA values
(14-51 kJmol ") are lower than the IP (361 kJmol ') and
BDE (298-383 kJmol ') values, which indicates that
SPLET is the preferred mechanism in water. It should be
noted that the ETE values (260-368 kImol ') are lower than
the corresponding BDE values, as well as the IP value,
which further indicates that in water, the SPLET mechanism
is thermodynamically favorable.

The preferred site of antioxidant action may be estimated
from the minimal sum of enthalpies involved in a particular
free radical scavenging mechanism. For the HAT mecha-
nism, it is simply the minimal value of the BDE (BDEmin)
that accounts for the one-step H-atom transfer. In the case of
the SET-PT mechanism, this sum includes the IP and PDE
[min(IP + PDE)], and in the SPLET mechanism, the sum
includes the PA and ETE [min(PA + ETE)]. The minimal
energy requirement for homolytic bond cleavage, i.e.,
BDEmin is related to the 4'-OH group of quercetin
(Fig. 1). Therefore, if the HAT mechanism occurs, the
thermodynamically preferred site for radical inactivation is
the 4’-OH group. An important influence on the free radical
scavenging activity of phenolics is the pH of the surround-
ing media [29-31]. In polar solvents that support ionization,
the antioxidant action of flavonoids occurs primarily by the
SPLET mechanism. The kinetic measurements show that
scavenging reactions in polar solvents are affected by the
acidity of flavonoid compounds, i.e., by the amount of
accessible phenoxide anions [8]. At a physiological pH of
7.4, one of OH groups of quercetin loses a proton [29]. The
min(PA + ETE) is characteristic of the 4’-OH group of
quercetin (Fig. 1). According to the lowest PA value, the
7-OH group of quercetin is the preferred site for heterolytic
bond cleavage and for entering the SPLET mechanism.
However, charge redistribution and resonance stabilization
[29] result in formation of the most stable 4'-O¢ radical—the
one formed at site with minimal energy requirements. In the
case of the SET-PT mechanism, the min(IP + PDE) value is
also associated with this OH group. Therefore, if the SPLET
(SET-PT) mechanism occurs, the 4’-O¢ phenoxyl radical of
quercetin will be formed.
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Fig. 1 Reaction enthalpies (in
kJmol ™) for quercetin
calculated by the COSMO PM6
method (in water) involved in
the hydrogen atom transfer
(HAT), single electron transfer
followed by proton transfer
(SET-PT) and sequential proton
loss electron transfer (SPLET)
mechanisms

HAT
BDE P
361
3-OH 305
5-OH 373
7-OH 383
3'-OH 311
4OH! (298
active\site for \
radical inactivation BDEmin

From the previous analysis, we can observe that the
thermodynamically preferred mechanism of free radical
scavenging by quercetin in water is the SPLET mechanism
because of the lowest PA (and ETE) values. As shown in
Fig. 1, the minimal energy requirements, i.e., BDEmin, min
(IP + PDE) and min(PA + ETE), are associated with the 4'-
OH group of quercetin, and this group is the preferred site

) H
0.055

)
0002 N\ H
0.000

Fig. 2 Spin densities of the 4’-O¢ phenoxyl radical of quercetin (in
water)
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. active site

minimal energy requirements
indicate active site for
radical inactivation

quercetin
SET-PT SPLET
PDE IP+PDE PA ETE PA +ETE
-57 304 35 269 304
11 372 22 350 372
21 382 14 368 382
51 30 ST 260 311
63 1298 31 267 298]
min(IP + PDE) min(PA + ETE)

for radical inactivation by all three mechanisms. In agree-
ment with this, the performed PM6 calculations indicate that
the 4'-O+ phenoxyl radical of quercetin is the lowest energy
radical with spin densities delocalized over the cinnamoyl
part (C and B rings) of the molecule, which contributes to
the stability of the radical (Fig. 2). Published DFT results
also indicate the 4'-O¢ phenoxyl radical of quercetin as the
most stable [24-26, 29, 32]. In the gas-phase, the HAT
mechanism is dominant because the BDEs of OH groups
of quercetin are significantly lower than the IP and PAs
(Table 2, quercetin).

BDE as a general descriptor of free radical scavenging
potency

The BDE of the O—H group has been recognized as a useful
descriptor in structure-activity analyses of antioxidants such
as flavonoids [33]. A number of DFT calculations of the O—
H BDE of flavonoids have been reported [34—38]. The O-H
BDE calculations explain that flavonoids with OH groups in
the ortho-positions can exhibit high free radical scavenging
activity [39]. In different media the same compound may
react with the same free radical by different mechanisms
depending on free radical properties, pH value and polarity
of the medium [10, 40, 41]. Despite that, numerous reports
on the antiradical activity of polyphenols usually find, albeit
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not yet fully recognized, superior correlation with O—H
BDE. Anouar et al. [16] reported that BDE is able to partly
describe energetics related to HAT, SPLET and SET-PT
mechanisms. In this section, we address this fact in terms
of the energy requirements for the reaction pathways in-
volved in the free radical scavenging mechanisms.

In the previous section, we illustrated that the minimal
energy requirements for the HAT (BDEmin), SET-PT [min
(IP + PDE)] and SPLET [min(PA + ETE)] are associated
with the same OH group of flavonoid compounds and that
the final product of all free radical scavenging mechanisms
is the same: the thermodynamically most stable flavonoid
phenoxyl radical. Here, we focused on the intercorrelation
between energetics related to the HAT, SET-PT and SPLET
mechanisms.

The total energy requirement for the SET-PT mechanism
(Eq. 11 in Fig. 3) is the sum of the IP (Eq. 4) and PDE
(Eq. 6). As in Eq. 2, in which the BDE represents the energy
change related to HAT, the energy requirement for SET-PT
also includes the difference in the enthalpies of the parent
molecule and the corresponding phenoxyl radical. This dif-
ference is corrected by the hydrogen atom enthalpy in Eq. 2
and by the sum of the proton and electron enthalpies in Eq.
11 (Fig. 3). This indicates that the BDE and (IP + PDE) are
perfectly correlated. The total energy requirement for the
SPLET mechanism (Eq. 12, Fig. 3) is the sum of the PA
(Eq. 8) and ETE (Eq. 10). Equation 12 (see Fig. 3) is the
same as Eq. 11, i.e., the total energy requirements for the
SPLET and SET-PT mechanisms are identical. Because the
net result from all free radical scavenging mechanisms rep-
resents the difference in the enthalpy of the parent molecule
and the corresponding phenoxyl radical (Fig. 3), the associ-
ated energy requirements are entirely correlated.

Tables 1 and 2 present the reaction enthalpies in water
and the gas-phase, respectively, related to the active site of
radical inactivation for 25 flavonoids. As previously noted,
the same OH group of a particular flavonoid is the active site
for radical inactivation by all three mechanisms because this
OH group possess the minimal energy requirements, i.e.,
BDEmin, min(IP + PDE) and min(PA + ETE). The correla-
tions of the BDE with the RSA are fair (»=—0.802 in water
and »=-0.830 in the gas-phase) and are the same as corre-
lations with the total minimal energy requirements for the
SET-PT and SPLET mechanisms. Hence, as expected, the

minimal energy requirements for HAT (BDE), SET-PT (IP +
PDE) and SPLET (PA + ETE) are perfectly intercorrelated.

The perfect correlation of the homolytic BDE of a phe-
nolic O-H bond (O-H BDE) with the total energy require-
ments related to the SET-PT and SPLET mechanisms
account for the fact that the O—H BDE is generally usable
as a significant descriptor that represents a radical scaveng-
ing potency of phenolic compounds such as flavonoids.
Consequently, the O—H BDE may be related to any of the
three free radical scavenging mechanisms due to their iden-
tical thermodynamics. This accounts for the prevalent cor-
relation of the BDE with the radical scavenging ability of
polyphenols in polar solvents [42], despite the fact that it is
an unexpected result [43]. It should be noted that the strong
correlation with the BDE does not implicate HAT as the
thermodynamically preferred mechanism. To ascertain
which radical scavenging pathway is favourable, besides
the BDEs, the values of IP and PA (ETE) should also be
considered [9, 19, 38].

Because the correlation between BDE of neutral flavo-
noid molecules and the observed experimental activity was
not pronounced, we investigated the capacity of flavonoid
phenoxide anions. In polar solvents the most acidic OH
group of flavonoids (mainly 7-OH group) is deprotonated,
and at a physiological pH of 7.4 flavonoid phenoxide anions
react with free radicals [29]. Energetics related to free scav-
enging potency of flavonoid phenoxide anions, performed
by COSMO calculations in water, are presented in Table 3.

In comparison with corresponding calculations for neu-
tral molecules, the results obtained for phenoxide anions
possess slightly better statistical characteristics. The corre-
lation coefficient (and standard error of estimate) of BDE
and ETE vs antiradical activity increases from »=—0.802 to
r=-0.837, and from »=—0.648 to »=—0.725, respectively.
The standard error of estimate decreases from s=23.01 to s=
20.14, and from 5=29.33 to s=25.34, for BDE and ETE,
respectively (Tables 1, 3).

Anouar et al. [16] emphasized possibility of second HAT
mechanism [23, 25], i.e., the ability of FI-Oe¢ radical, formed
after a first HAT pathway, to react with free radicals (e.g.,
DPPH). They found that the product formed after the second
HAT is more stable, and that two HATs are more feasible.
Recently, enthalpy changes associated with abstraction of
two hydrogen atoms from the flavonoids were studied and

Fig. 3 Total energy
requirements for SET-PT and HAT
SPLET are the same, and the
energy required for HAT is SET-PT
perfectly correlated with them

SPLET

BDE = H(F1-O") + H(H) — H(FI-OH) 2)

IP + PDE = H(FI-OH™) + H(¢") — H(FI-OH) + H(FI-O") + H(H") — H(FI-OH™")

PA + ETE = H(FI-O") + HH") - H(FI-OH) + H(FI-O") + H(¢") - H(FI-O")

= H(F1-0") + H(e") + H(H") — H(FI-OH) (11)

= H(FI-0") + HH") + H(e") — H(FI-OH) (12)
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Table 4 COSMO PM6 BDE values (kJmol™") calculated in water for the first (BDE) and second (BDE) HAT mechanism for 18 phenoxide
anions of flavonoids. BDE,, denotes average value for double HAT mechanism

Flavonoid Anion site BDE BDEp BDE,, RSA

1 Morin 3-07/2-0" 306.02 313.59 309.81 96.5
2 Taxifolin 7-0° 307.80 287.07 297.44 94.8
3 Kaempferol 7-0° 303.89 308.13 306.01 93.5
4 Fustin 7-0° 305.86 288.61 297.24 91.9
5 Galangin 7-0° 303.19 395.22 349.21 91.8
6 Rutin 7-0° 301.48 295.55 298.52 90.9
7 Quercetin 7-0° 296.55 303.13 299.84 89.8
8 Luteolin 7-glucoside 4-0" 303.92 308.41 306.17 87.6
9 Quercetin 3-glucoside-7-rhamnoside 4'-0" 300.87 302.34 301.61 86.8
10 Laricytrin 7-0° 287.68 302.58 295.13 84.6
11 Laricytrin 3'-glucoside 7-0° 295.68 315.73 305.71 83.8
12 Robinetin 7-0° 289.76 305.23 297.50 823
13 Fisetin 7-0° 296.72 301.85 299.29 79.0
14 Myricetin 7-0° 289.47 311.60 300.54 72.8
15 Hesperetin 7-0° 307.01 427.18 367.10 30.0
16 Vitexin 7-0° 367.80 403.10 385.45 21.0
17 Naringenin 7-0° 355.09 355.82 355.46 6.3
18 Apigenin 7-0° 340.40 499.60 420.00 0.7

r=—0.804 r=—0.803 r=—0.875
s=19.79 5s=19.84 s=16.12

related to the experimental activities of the flavonoids [44].
Our results of COSMO calculations in water for the first and
second HAT (BDE and BDEp, respectively) for flavonoid
phenoxide anions are presented in Table 4. Considered
flavonoids possess at least three phenolic OH groups.
Average BDE value of two HATs is denoted by BDE,,
[16]. By using BDE,, as a descriptor we obtained r=
—0.875 and s=16.12. Excluding two outliers (galangin and
naringenin) from the data set, the statistical analysis results
in a one-descriptor model of good quality (Eq. 13):

RSA = 313(17.501) — 0.752(+0.055)BDEy 5,
N=16 r=-—-0965 s=798 F=189.29

In Eq. 13, N represents the number of compounds, 7 is the
correlation coefficient, s the standard error of estimate, and
F is Fisher F-value. Figure 4 plots experimental RSA values
versus BDE,, for 16 flavonoids listed in [15]. Linear regres-
sion model presented by Eq. 13 outperforms our two-
descriptor models developed on the same data set [45, 46].
This indicates high potential of BDE,, as a descriptor for
modeling flavonoids RSA.

As can be seen from Table 4, morin and hesperetin
possess nearly identical BDE values (306.02 vs 307.01 kJ
mol™") and very different RSA (96.5 % vs 30 %).
Corresponding BDE,, values of 309.81 vs 367.10 kimol ™’
for morin and hesperetin, respectively, indicating that a
second HAT mechanism for hesperetin is much less

probable than for morin. Considering the chemical structure
of hesperetin, this result is expected due to the lack of
structural requirements for effective radical scavenging,
i.e., vicinal OH groups in B ring, C-3 phenolic OH group
and C2-C3 double bond in C ring [47]. The lower activity
of hesperetin vs morin is related to the second HAT mech-
anism (BDEp), and not to the first HAT mechanism (BDE).
This fact approves usefulness of BDEp and BDE,,, as

1004
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Fig. 4 Scatter plot of experimental RSA values obtained by the DPPH
radical versus calculated BDE,, for data set of 16 flavonoids from [15]
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descriptors related to free scavenging activity of phenolic
compounds.

Conclusions

In this report, we showed that the BDE, which is by defini-
tion related to the HAT mechanism, can also be associated
with the SET-PT and SPLET mechanisms. This is so be-
cause the total energy requirements related to the SET-PT
(sum IP and PDE) and SPLET (sum PA and ETE) mecha-
nisms are equivalent to those of the HAT mechanism and are
correlated perfectly with the BDE values. The HAT mech-
anism leads to the formation of the same products as those
obtained by SET-PT and SPLET mechanisms and all three
mechanisms are thermochemically identical. This could be a
major reason why the published data on polyphenolic anti-
oxidant activities measured by various assays correlate bet-
ter with the BDE than with other reaction enthalpies
involved in radical scavenging mechanisms, i.e., IP, PDE,
PA and ETE. The BDE is able to fairly rank flavonoids as
antioxidants in any medium, but to determine which radical
scavenging mechanism represents the most probable reac-
tion pathway from the thermodynamic point of view, the IP
and PA (ETE) should also be considered. Consideration of
the second HAT mechanism and the use of BDE,, as a
descriptor for modeling RSA of flavonoids is confirmed.
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